The super-orbital variability of LS I +61 303 at all frequencies
Abstract
Detected from radio to TeV gamma rays, the gamma-ray binary LS I + 61 303 is highly variable across all frequencies. Beside its variability due to the modulation of its emission at the 26.496-day orbital period, the system also presents variability consistent with the so-called superorbital period, of 1667 days. Short and highly luminous X-ray bursts, reminiscent of typical magnetar behavior, have been also detected. I will summarize this phenomenology and present recent analysis of LSI +61 303 using data taken with the Fermi Large Area Telescope, putting it in a multi-wavelength context. I will show that the super-orbital modulation of the GeV data is obvious, and that is more prominently seen at orbital phases around apastron. I will also show that the super-orbital evolution also exists in TeV data. Finally, I will present correlation studies between TeV, GeV, X-ray, optical, and radio data and comment on a physical, pulsar-based scenario which could explain the general behavior of this enigmatic binary.
- Publication:
-
41st COSPAR Scientific Assembly
- Pub Date:
- July 2016
- Bibcode:
- 2016cosp...41E1928T